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Abstract: In the recent years, as the number of lines of code has been increasing exponentially, and this has also 

increased the time to solve the bugs found in the source code of any software. To manage this surge in bugs, there is 

need to reduce the time required to solve these bugs i.e. to reduce the bug-fix time as well as to assign priorities to 

bugs, according to bug-fix time. Handling the bugs efficiently could prove to be cost saving for industries. In this paper 

we would be proposing model for reducing bug fix time and solution on bug fix time. 
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I. INTRODUCTION 

 

The level of software quality depends on the number of 

bugs occurred throughout out the developing phase of 

software development process and the time required to fix 

them. Bug(s) can be defined as a fault or error which gives 

uncertain output. The time taken for solving the bug or 

fixing the bug starting from bug reported time is called as 

bug-fix time. 

Generally, when the bug is reported, project management 

team members’ approaches technical experts or experience 

team members to get bug fix times which estimated and 

the response would be very much personalized and 

subjective.  

In software development phase, the resource management 

and planning should be done by considering bugs and bug 

fix times, that result in less bugs and decrease in bug fix 

time. And so quality of software can be improved if bug-

fix time can be predicted accurately. 

In previous years, there has been lots of research on 

software intelligence problems like bug prediction and 

testing efforts required. Thus, some similar techniques can 

be provided to predict bug fix time. While developing 

prediction models, historical data about bug fix times of 

previous bugs can be used. 
 

Each time when the bug is reported, related data will be 

quite limited, but as the time passby there will be huge 

amount of data will be gathered. Such as, some attributes 

like number of developers who participated in fixing the 

bug also the comments of developers about the bug will be 

additional information about the bug. Many researchers 

working on this problem have considered features from 

thedata that is available not only at the time of reporting 

but during the life time of the bug. 

 

II. RELATED WORK 

 

In this section we consider and explain the related work on 

this issue by research community. R. Buse et al. 

introduced the concept of Software Analytics can be 

defined as a process of assisting decision maker in  

 

 

extracting important information. It can be also said as 

process of predicting bug and bug fix time, which ensure 

quality of product. 

Ramarao et al. have classified bugs with an accuracy of 

65.11%, whereas the classification done by α-kNN is 

53.64%, concluding that the proposed model is more 

efficient than the algorithm. Prediction of bug fix times, 

immediately after the bug has been reported has a lot of 

challenges, hence Ramarao et al. have proposed score of a 

reporter as a prominent feature to predict the time required 

to solve bugs. 

W. Abdelmoez et al. have compared 3 active open source 

projects, categorizing bugs into classes according to the 

time required to solve them. Therefore the developers can 

work on the bugs that would take more time.  

Giger et al. using decision tree have built a prediction 

model. The results produced having accuracy between 

60% and 70%, categorizing bugs into slow and fast 

classes. Post submission data have improved the efficiency 

by 5% to 10%. 

Weiss et al. built a model using α-kNN, considering only 

two data points, viz title and description. This model gave 

better results than Naïve Bayes approach. Their 

predictions have a high similarity to that of bug reports, 

saying it is possible that estimate the effort required 

immediately. 

 

III. PROPOSED SYSTEM 

 

In this section we will be discussing the system which we 

are going to develop and test it with our testing data. 

Firstly the administrator adds the dataset in the system; the 

system would parse and tokenize the bugs. The admin 

would add some filter words that are not relevant to 

analyze the bugs. Once the filtering of stop-words is done, 

then the data is passed to TF-IDF algorithm. 
 

Term Frequency - Inverse Document Frequency is an 

algorithm used to help us determine the frequency of 

words in those documents. The values gained from TF-
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IDF are used in Cosine Similarity, this algorithm is used to 

find the cosine values of individual words, and comparing 

it with others, the smaller the angular difference, the more 

similar words are. When the values are generated, they are 

scored, and sorted in descending order. 

The diagram below shows the architecture of our proposed 

system: 

 

 

 

 

 

 

 

 

 

 

 

     

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1.  Architecture of analysis and solution finding 

system 

 

The relevant results are shown, the solution are also 

displayed accordingly. If the user is not satisfied with the 

results displayed, then he could go look for online 

solutions, even if the online solutions are not sufficient for 

him then he could forward this bug to the technical head, 

where the technical head would the provide the solution to 

it.   

 

The system will store all the bugs reported by the reporter 

with its time, priority and status. Status may be solved or 

unsolved for bug. Our system will search bug description 

in database, which will quickly provide the reporter with 

optimized solution. If the solutions are not available or 

reported bug description is not available in dataset then 

such bug can be searched on Google using same 

application. Analysis of the reporters can be done, with 

parameters like title and description of bug as well as the 

time required to solve it would provide detailed reporting 

related to the bug, reporter and software respectively. 

 

IV. METHODOLOGY 

 

A. DATASET 

The dataset used by the system to test is 

stackoverflow.com dataset. It is website which provides 

answers to programming language questions. Note that the 

programming language can be any language.  The data 

from stackoverflow.com contains entries of past 8 years. 

The dataset is in the form of questions and answer. We 

will be filtering it, according to system requirement. The 

system only needs three parameters: 

• Tittle 

• Description 

• Solution 

Other parameters of dataset are omitted. The duplication 

of entities is avoided. 

 

B. ALGORITHM 

I.TF-IDF 

Term weighting can be as simple as binary representation 

or as detailed as a mix of terms and existing datasets. TF-

IDF is the most widely known and used weighting 

method, and it is remain even comparable with novel 

methods. The purpose of the text preprocessing stage is to 

refer to each document as a feature vector that is to divide 

the text into individual words.  

In TF-IDF term weighting, the text documents are 

characterized as transactions. Choosing the keyword for 

the feature selection process is the main preprocessing 

process necessary for the indexing of documents. This 

study utilized two different TF-IDF methods, i.e. Global 

and normal, to weight the terms in term-document 

matrices of our evaluation datasets.  

A common practice to avoid this variability or, at least, 

reduce the possible impacts resulting from it, is the 

normalization of the TF-IDF scores for each document in 

the collection by using the Euclidean norm is calculated by 

using Equations (1) and (2) respectively [5] as follows:  

TF-IDF=ln(TF) ×ln(IDF)              (1) 

TF-IDF=TF×IDF  (2) 

                                                                                                                    

IiII.COSINE SIMILARITY 

Cosine similarity is a measure of similarity between two 

vectors of an inner product space that measures the cosine 

of the angle between them. The cosine of 0° is 1, and it is 

less than 1 for any other angle. It is thus a judgment of 

orientation and not magnitude: two vectors with the same 

orientation have a Cosine similarity of 1, two vectors at 

90° have a similarity of 0, and two vectors diametrically 

opposed have a similarity of -1, independent of their 

magnitude. Cosine similarity is particularly used in 

positive space, where the outcome is neatly bounded in 

[0,1].  
 

Note that these bounds apply for any number of 

dimensions, and Cosine similarity is most commonly used 
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in high-dimensional positive spaces. For example, in 

Information Retrieval and text mining, each term is 

notionally assigned a different dimension and a document 

is characterized by a vector where the value of each 

dimension corresponds to the number of times that term 

appears in the document. Cosine similarity then gives a 

useful measure of how similar two documents are likely to 

be in terms of their subject matter. The technique is also 

used to measure cohesion within clusters in the field of 

data mining. 

Cosine distance is a term often used for the complement in 

positive space, that is: It is important to note, however, 

that this is not a proper distance metric as it does not have 

the triangle inequality property and it violates the 

coincidence axiom; to repair the triangle inequality 

property whilst maintaining the same ordering, it is 

necessary to convert to Angular distance. One of the 

reasons for the popularity of Cosine similarity is that it is 

very efficient to evaluate, especially for sparse vectors, as 

only the non-zero dimensions need to be considered. 

 

The cosine of two vectors can be derived by using the 

Euclidean dot product formula: 

a.b = ||a|| ||b|| cos θ (3) 

 

Given two vectors of attributes, A and B, the cosine 

similarity, cos(θ), is represented using a dot product and 

magnitude. The resulting similarity ranges from −1 

meaning exactly opposite, to 1 meaning exactly the same, 

with 0 usually indicating independence, and in-between 

values indicating intermediate similarity or dissimilarity. 

For text matching, the attribute vectors A and B are 

usually the term frequency vectors of the documents. The 

cosine similarity can be seen as a method of normalizing 

document length during comparison. In the case of 

information retrieval, the cosine similarity of two 

documents will range from 0 to 1, since the term 

frequencies (TF-IDF weights) cannot be negative. The 

angle between two term frequency vectors cannot be 

greater than 90°. 

 

V. CONCLUSION 

 

We will be developing the system which will be more 

accurate in analysis and provides solution to bugs which 

may occur. The system may also generate report of each 

user to the system. The report may help in analyzing 

performance of user.  
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