
IJARCCE ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 3, March 2017

Copyright to IJARCCE DOI10.17148/IJARCCE.2017.6371 318

Analysis and Solutions for Bug

Akshay Khamkar
1
, Aishwarya Jagtap

2
, Neeraj Pattan

3
, Anuja Raipure

4
, Prof. Mrs. P.Y. Pawar

5

Student, Department of Information Technology, Sinhgad Academy of Engineering, Pune, India
1,2,3,4

Professor, Department of Information Technology, Sinhgad Academy of Engineering, Pune, India
 5

Abstract: In the recent years, as the number of lines of code has been increasing exponentially, and this has also

increased the time to solve the bugs found in the source code of any software. To manage this surge in bugs, there is

need to reduce the time required to solve these bugs i.e. to reduce the bug-fix time as well as to assign priorities to

bugs, according to bug-fix time. Handling the bugs efficiently could prove to be cost saving for industries. In this paper

we would be proposing model for reducing bug fix time and solution on bug fix time.

Keywords: Cosine Algorithm, Bug-Fix time, TF-IDF (Term Frequency - Inverse Document Frequency).

I. INTRODUCTION

The level of software quality depends on the number of

bugs occurred throughout out the developing phase of

software development process and the time required to fix

them. Bug(s) can be defined as a fault or error which gives

uncertain output. The time taken for solving the bug or

fixing the bug starting from bug reported time is called as

bug-fix time.

Generally, when the bug is reported, project management

team members’ approaches technical experts or experience

team members to get bug fix times which estimated and

the response would be very much personalized and

subjective.

In software development phase, the resource management

and planning should be done by considering bugs and bug

fix times, that result in less bugs and decrease in bug fix

time. And so quality of software can be improved if bug-

fix time can be predicted accurately.

In previous years, there has been lots of research on

software intelligence problems like bug prediction and

testing efforts required. Thus, some similar techniques can

be provided to predict bug fix time. While developing

prediction models, historical data about bug fix times of

previous bugs can be used.

Each time when the bug is reported, related data will be

quite limited, but as the time passby there will be huge

amount of data will be gathered. Such as, some attributes

like number of developers who participated in fixing the

bug also the comments of developers about the bug will be

additional information about the bug. Many researchers

working on this problem have considered features from

thedata that is available not only at the time of reporting

but during the life time of the bug.

II. RELATED WORK

In this section we consider and explain the related work on

this issue by research community. R. Buse et al.

introduced the concept of Software Analytics can be

defined as a process of assisting decision maker in

extracting important information. It can be also said as

process of predicting bug and bug fix time, which ensure

quality of product.

Ramarao et al. have classified bugs with an accuracy of

65.11%, whereas the classification done by α-kNN is

53.64%, concluding that the proposed model is more

efficient than the algorithm. Prediction of bug fix times,

immediately after the bug has been reported has a lot of

challenges, hence Ramarao et al. have proposed score of a

reporter as a prominent feature to predict the time required

to solve bugs.

W. Abdelmoez et al. have compared 3 active open source

projects, categorizing bugs into classes according to the

time required to solve them. Therefore the developers can

work on the bugs that would take more time.

Giger et al. using decision tree have built a prediction

model. The results produced having accuracy between

60% and 70%, categorizing bugs into slow and fast

classes. Post submission data have improved the efficiency

by 5% to 10%.

Weiss et al. built a model using α-kNN, considering only

two data points, viz title and description. This model gave

better results than Naïve Bayes approach. Their

predictions have a high similarity to that of bug reports,

saying it is possible that estimate the effort required

immediately.

III. PROPOSED SYSTEM

In this section we will be discussing the system which we

are going to develop and test it with our testing data.

Firstly the administrator adds the dataset in the system; the

system would parse and tokenize the bugs. The admin

would add some filter words that are not relevant to

analyze the bugs. Once the filtering of stop-words is done,

then the data is passed to TF-IDF algorithm.

Term Frequency - Inverse Document Frequency is an

algorithm used to help us determine the frequency of

words in those documents. The values gained from TF-

IJARCCE ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 3, March 2017

Copyright to IJARCCE DOI10.17148/IJARCCE.2017.6371 319

IDF are used in Cosine Similarity, this algorithm is used to

find the cosine values of individual words, and comparing

it with others, the smaller the angular difference, the more

similar words are. When the values are generated, they are

scored, and sorted in descending order.

The diagram below shows the architecture of our proposed

system:

Fig. 1. Architecture of analysis and solution finding

system

The relevant results are shown, the solution are also

displayed accordingly. If the user is not satisfied with the

results displayed, then he could go look for online

solutions, even if the online solutions are not sufficient for

him then he could forward this bug to the technical head,

where the technical head would the provide the solution to

it.

The system will store all the bugs reported by the reporter

with its time, priority and status. Status may be solved or

unsolved for bug. Our system will search bug description

in database, which will quickly provide the reporter with

optimized solution. If the solutions are not available or

reported bug description is not available in dataset then

such bug can be searched on Google using same

application. Analysis of the reporters can be done, with

parameters like title and description of bug as well as the

time required to solve it would provide detailed reporting

related to the bug, reporter and software respectively.

IV. METHODOLOGY

A. DATASET

The dataset used by the system to test is

stackoverflow.com dataset. It is website which provides

answers to programming language questions. Note that the

programming language can be any language. The data

from stackoverflow.com contains entries of past 8 years.

The dataset is in the form of questions and answer. We

will be filtering it, according to system requirement. The

system only needs three parameters:

• Tittle

• Description

• Solution

Other parameters of dataset are omitted. The duplication

of entities is avoided.

B. ALGORITHM

I.TF-IDF

Term weighting can be as simple as binary representation

or as detailed as a mix of terms and existing datasets. TF-

IDF is the most widely known and used weighting

method, and it is remain even comparable with novel

methods. The purpose of the text preprocessing stage is to

refer to each document as a feature vector that is to divide

the text into individual words.

In TF-IDF term weighting, the text documents are

characterized as transactions. Choosing the keyword for

the feature selection process is the main preprocessing

process necessary for the indexing of documents. This

study utilized two different TF-IDF methods, i.e. Global

and normal, to weight the terms in term-document

matrices of our evaluation datasets.

A common practice to avoid this variability or, at least,

reduce the possible impacts resulting from it, is the

normalization of the TF-IDF scores for each document in

the collection by using the Euclidean norm is calculated by

using Equations (1) and (2) respectively [5] as follows:

TF-IDF=ln(TF) ×ln(IDF) (1)

TF-IDF=TF×IDF (2)

IiII.COSINE SIMILARITY

Cosine similarity is a measure of similarity between two

vectors of an inner product space that measures the cosine

of the angle between them. The cosine of 0° is 1, and it is

less than 1 for any other angle. It is thus a judgment of

orientation and not magnitude: two vectors with the same

orientation have a Cosine similarity of 1, two vectors at

90° have a similarity of 0, and two vectors diametrically

opposed have a similarity of -1, independent of their

magnitude. Cosine similarity is particularly used in

positive space, where the outcome is neatly bounded in

[0,1].

Note that these bounds apply for any number of

dimensions, and Cosine similarity is most commonly used

Import Bug
Dataset

Parse and

Tokenize

Filter Stop

Words

TF-IDF

Cosine
Similarity

Score
Generation and

Sorting

Display

Relevant Output

Stop

If relevant
output not found

Go Online

Filter

Words DB

IJARCCE ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 3, March 2017

Copyright to IJARCCE DOI10.17148/IJARCCE.2017.6371 320

in high-dimensional positive spaces. For example, in

Information Retrieval and text mining, each term is

notionally assigned a different dimension and a document

is characterized by a vector where the value of each

dimension corresponds to the number of times that term

appears in the document. Cosine similarity then gives a

useful measure of how similar two documents are likely to

be in terms of their subject matter. The technique is also

used to measure cohesion within clusters in the field of

data mining.

Cosine distance is a term often used for the complement in

positive space, that is: It is important to note, however,

that this is not a proper distance metric as it does not have

the triangle inequality property and it violates the

coincidence axiom; to repair the triangle inequality

property whilst maintaining the same ordering, it is

necessary to convert to Angular distance. One of the

reasons for the popularity of Cosine similarity is that it is

very efficient to evaluate, especially for sparse vectors, as

only the non-zero dimensions need to be considered.

The cosine of two vectors can be derived by using the

Euclidean dot product formula:

a.b = ||a|| ||b|| cos θ (3)

Given two vectors of attributes, A and B, the cosine

similarity, cos(θ), is represented using a dot product and

magnitude. The resulting similarity ranges from −1

meaning exactly opposite, to 1 meaning exactly the same,

with 0 usually indicating independence, and in-between

values indicating intermediate similarity or dissimilarity.

For text matching, the attribute vectors A and B are

usually the term frequency vectors of the documents. The

cosine similarity can be seen as a method of normalizing

document length during comparison. In the case of

information retrieval, the cosine similarity of two

documents will range from 0 to 1, since the term

frequencies (TF-IDF weights) cannot be negative. The

angle between two term frequency vectors cannot be

greater than 90°.

V. CONCLUSION

We will be developing the system which will be more

accurate in analysis and provides solution to bugs which

may occur. The system may also generate report of each

user to the system. The report may help in analyzing

performance of user.

REFERENCES

[1] Pranav Ramarao et al. “Impact of Bug Reporter’s Reputation on

Bug-fix Times”, International Conference on Information System

Engineering, 2016.

[2] W. Abdelmoez et al. “Bug Fix-Time Prediction Model using Naïve
Bayes Classifier”, ICCTA 2012, 13-15 October 2012.

[3] Emanuel Giger et al, “Predicting the Fix Time of Bugs”, RSSE

2010, May 4 2010.
[4] CathrinWeiß et al, “How Long will it Take to Fix This Bug?”,

IEEE 2007.

[5] Raymond P.L. Buse& Thomas Zimmerman, “Analytics for

Software Development”, FoSER, 2010.

BIOGRAPHIES

Akshay Khamkar Pursuing Bachelor of Engineering

(B.E) in Information Technology from Sinhgad Academy

of Engineering, Savitribai Phule Pune University

(S.P.P.U)

Aishwarya Jagtap Pursuing Bachelor of Engineering

(B.E) in Information Technology from Sinhgad Academy

of Engineering, Savitribai Phule Pune University

(S.P.P.U)

Neeraj Pattan Pursuing Bachelor of Engineering (B.E) in

Information Technology from Sinhgad Academy of

Engineering, Savitribai Phule Pune University (S.P.P.U)

Anuja Raipure Pursuing Bachelor of Engineering (B.E)

in Information Technology from Sinhgad Academy of

Engineering, Savitribai Phule Pune University (S.P.P.U)

Prof. Mrs. P.Y. Pawar, M.E. Computer Engineering,

Sinhgad Academy of Engineering, Pune

